Toward Applying Machine Learning to Design Rule Acquisition for Automated Graphics Generation
نویسندگان
چکیده
Effective automated graphics generation systems rely on well-established design rules. We are currently exploring how machine learning techniques may be used to acquire design rules automatically. In this paper, we present a model that addresses four fundamental aspects toward applying machine learning to graphics design rule formulation. In particular, learning spaces and learning goals describe where learning may take place and what needs to be learned. Learning features and learning strategies discuss how to describe various learning data and how to choose proper learning techniques. Using our model, we have designed and conducted two experiments to demonstrate two different applications of machine learning in graphics rule acquisition.
منابع مشابه
The machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix
The current world is moving towards the development of hardware or software presence of artificial intelligence in all fields of human work, and architecture is no exception. Now this research seeks to present a theoretical and practical model of intuitive design intelligence that shows the problem of learning layout and spatial relationships to artificial intelligence algorithms; Therefore, th...
متن کاملApplying Machine Learning Techniques to Rule Generation in Intelligent Tutoring Systems
The purpose of this research was to apply machine learning techniques to automate rule generation in the construction of Intelligent Tutoring Systems. By using a pair of somewhat intelligent iterative-deepening, depth-first searches, we were able to generate production rules from a set of marked examples and domain background knowledge. Such production rules required independent searches for bo...
متن کاملEvolutionary Generation of Implicative Fuzzy Rules for Design Knowledge Representation
In knowledge representation by fuzzy rule based systems two reasoning mechanisms can be distinguished: conjunction-based and implication-based inference. Both approaches have complementary advantages and drawbacks depending on the structure of the knowledge that should be represented. Implicative rule bases are less sensitive to incompleteness of knowledge. However, implication-based inference ...
متن کاملMachine Learning: the Automation of Knowledge Acquisition Using Kohonen Self-organising Map Neural Network
In machine learning, a key aspect is the acquisition of knowledge. As problems become more complex, and experts become scarce, the manual extraction of knowledge becomes very difficult. Hence, it is important that the task of knowledge acquisition be automated. This paper proposes a novel method that integrates neural network and expert system paradigms to produce an automated knowledge acquisi...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999